|
14.选择、机会与收入的个人分配
|
|
传统的“分配理论”所涉及的,几乎完全是生产要素的定价问题,即收入在各种按其生产函数所划分的经营资源之间的分配问题。它对收入在社会各成员之间的分配问题论及甚少,而且也不存在讨论这一问题的、相应的理论。不存在一种令人满意的、收入的个人分配理论,同时也不存在一种将收入的职能分配与个人分配结合起来的理论桥梁,这是现代经济理论中的一个重要的缺口。
收入的职能分配一直被看作是主要地反映了个人通过市场所作的选择:各种要素的价值来自于它们在生产过程中所经营的最终产品的价值;而这些最终产品的价值依次地又为消费者在各种从技术上说是可以实现的选择之间的决策所决定。另一方面,当收入的个人分配这一问题最终地被加以分析的时候,它一直被视为基本上独立于个人通过市场所作的选择,除非是作为影响单位生产要素之价格的因素。而个人或家庭之间在所得收入方面的差别,通常被看作是或反映了基本上非个人所能控制的有关情况,如不可避免的机遇,及人们在天赋与财富继承方面的差异,或反映了集体行动,如征税与补贴。
人们在上述两种联系如此紧密的场景中对个人选择所赋予的作用之间的明显差别,似乎很难成立。个人通过市场所作的选择,可以极大地限定下述两种因素对收入的个人分配的影响:一种因素是非个人所能控制的有关情况,一种是意在影响收入分配的共同行动。此外,这些共同行动本身,即使不是个人通过市场所作的选择的一种反映,也是个人偏好的一种大致的证明。
个人选择可以通过两种截然不同的方式而对收入分配产生影响。另一种方式是:货币收入方面的差异可以补偿随取得这些收入而来的非金钱方面的有利或不利因素。尽管这一方式的重要性一般说来尚未得到足够的重视,但这一方式却经常引起人们的注意,而在本文章中,我们不准备进一步地研究这一问题。举例说明,一种不令人愉快的职业必需得到比另一种令人愉快的职业更高的报酬——如果前者想吸引那些同样可以得到后一种职业的人的话;没有吸引力的地区的收入必须高于有吸引力的地区的收入——如果前者不想让它的居民搬走的话;等等。在这些情况下,货币收入方面的差异被用来产生实际收入方面的平等。
第二种方式是:个人选择可以影响收入分配。这一方式较少地为人们所注意。某个人可得到的各种情况,在它们所确保的收入的概率分配方面(作为许多方面之一)是不同的。所以,他在这些情况中所作的选择,部分地取决于他对风险的偏好。假定两组社会成员面对着同一系列情况,其中一种社会是由极为厌恶风险的人所组成的;另一种社会是由“喜欢”风险的人所组成的。偏好上的这一差异将决定着人们对同一系列情况的不同选择。资源在意在产生对个人具有吸引力的这类风险的活动中的不同分配,将再清楚不过地反映这一点(尽管这种反映绝不是完全的)。例如,在第一种社会中,保险将是一项重要的行业,而在第二种社会中,投机将是一项重要的行业。同时在第一种社会当中,所得税与遗产税将是高度累进的,而在第二种社会当中,二者的累进程度将较小,甚至是累退的。结果将产生两种社会中不同的收入分配;与第二种社会相比,第一种社会中收入的不平等程度将较小。从中可以得出这样的结论:一社会中收入方面的不平等可以被看作是(至少部分地)——且也许大部分地——与该社会成员的兴趣与偏好相一致的精心选择的一种反映(这基本上可以与社会所生产的产品种类上的不一致同样看待),而不应仅仅地被看作是一种“不可抗拒的力量”。
接下来的阐述在一抽象水平上证明了并探讨了这样一种相互关系:个人在具有风险的各种情况之中所作的选择与个人在不同的收入水平上的分布情况之间的相互关系。为了进行这一探索性的讨论,我将接受决策的预期效用假说,即我将假定:个人在具有风险的各种情况中所进行选择,就犹如他们知道与每一种情况相关的收入的概率分配一样,就犹如他们正在力求使某一被称作“效用”的数量的预期值(这是收入的一个函数)最大化一样。我将假定:效用是收入的一个增函数。
1.一个与世隔绝的人
作为一个最简单的事例,让我们考虑一下与人类完全隔离开来的鲁宾逊·克鲁苏的情况。为了避免收入测算上的困难,让我们假定他只生产一种产品,或者说对于所有的产品来说,只存在着一套可以被用来对产量(以一种产品的单位计量的)加以表示的相对“价格”或“价值”。
在任一时点上,鲁宾逊·克鲁苏都有着多种可以进行的活动——即使用他的时间及岛上的各种资源的不同方法。他可以对可耕种的土地进行集约开垦或粗放开垦,他可以制作某种资本产品来帮助他的开垦,他可以去打猎或去钓鱼或者二者都做,等等,等等,无穷无尽。假定他选定了某项活动并开始进行。结果将是一定时期内的收入之流,即为I(t),这里I代表着单位时间上的收入,t代表时间。目前,他所进行的活动是t 0 ,当然,I(t)在(t>t 0 时)并不是完全可知的——他所选定的活动的实际结果不仅取决于鲁宾逊·克鲁苏的所作所为,而且取决于下述随机事件:如天气,当他去钓鱼时周围鱼的偶然数最,他所种植的种子的质量,他的健康状况,等等。我们可以通过下述假定而将这一不确定性考虑进来:假定相对于每一种活动,都存在着一系列可能的将来收入之流,每一种可能的将来收入之流都具有己知的发生概率p
t 0 [I(t)]。这样一种收入之流的概率分布我们将称之为一种“预期”。
在任一时点t 0 上,鲁宾逊·克鲁苏可选择的各种预期,毫无疑问地取决于他过去的活动。而这依次地又可以被看作是前一阶段的类似选择的结果。如果我们愿意的话,我们可以将他想象为:在开始我们的分析的任一时点上(比如说当他踏上这个小岛的时候),他都在为他的余生制定一个简单的决策。对于所有的目的来说,这种概括程度可能不是十分理想的;对于某种目的来说,用冯·纽曼及摩根斯坦的术语来说,最好对个人的“行动”加以考虑,而不是完全地考虑个人的“策略”。然而,在我们目前的分析阶段上,可以对所有不必要的复杂情况予以排除。采用这一观点使我们得以去掉下标t 0 ,因为仅存在一套有关的预期,且每一种预期所包括的将来收入之流都是对同一时期而言的,也就是说,是从最初的开始点到无限的将来。
作为一种更进一步的简化(尽管是更为不可靠的),我们可以通过下述方法而用一个数来替代每一个I(t):或者通过假定I(t)是一单变数家族的所有成员,比如说具有同一斜率的所有直线;或者通过以某一给定的利率而把将来收入贴现为初始点的价值,并将这些贴现收入相加以求得每一收入流的现值。而这两种假设之中的任何一个都可以确保每一I(t)为一数值所替代。我们假定这一数值为W,代表财富,且可以在不知道个人效用函数创的情况卜进行计算。
这些简化假设没意味着:在所讨论的某一行动的结果将是一小于W的财富值的概率一定的条件下,任一预期都可以完全地由一连续型概率分布P(W)所描述。令A’代表所有活动的集合,a代表其中的在一特定的活动,Pa(W)代表与α相对应的预期。
效用是财富的一个增函数(在我们目前的公式中是用财富来替代收入)这一假设本身便足以排除某些预期。
如果
Pa(W ≤ Pa’(W)
(对于所有的W来说) (1)
且
Pa(W)<Pa’(W) (对于某些W来说)
那么,不论财富的效用函数的形状如何,a都明显地优于a’。令(削减后的)集合A由这样一些活动所构成从而使得与这些活动相对应的预期中没有一个满足方程(1)。从而,在集合A之中所进行的选择不仅仅取决于效用函数的一阶导数。
令 U(W)代表鲁宾逊·克鲁苏的效用函数。那么,按照预期效用假说,他将选择预期a从而使得 为最大值。这里,
(2)
除了对预期效用假说所作的这一重新表述以外,在目前这一概括水平上,关于这一特例所能阐述的东西甚少。
假定存在着许多完全相同的鲁宾逊·克鲁苏:他们面对着完全相同的活动系列及相应的预期,并彼此完全隔离。原则上,所有的人都将作出同样的选择——预期a * 。此外,如果任一鲁宾逊·克鲁苏的活动结果(他们实现了的W)都完全地独立于任一其他的鲁宾逊·克鲁苏的活动结果(另一个人的实现了的W),那么,Pa * (W)将是实现了的、财富在他们之中的连续型分布情况.他们之中的收入“不平等”将部分地是精心选择的产品,且”不平等”的程度将部分地取决于对于他们来说是共同的这一效用函数的形状。如果这一效用函数是一直线时,那么每一个鲁宾逊·克鲁苏都将选择具有最高预期收入的预期;如果这一效用函数是处处下凹的话(即收入的边际效用递减),那么他将愿意牺牲某些预期收入来取得减小了的收入方差;如果这一效用函数是处处上凹的话(即收入的边际效用递增),那么他将愿意牺牲某些预期收入来取得增大了的收入方差,等等。给定一足够大且种类足够多的预期系列,这些鲁宾逊·克鲁苏之间的收入之“不平等”,在第二种情况中程度最小,而在第三种情况中程度最大。
然而,任一鲁宾逊·克鲁苏所实现的W
,不一定要完全独立于其他鲁宾逊·克鲁苏所实现的W。例如,尽管每一鲁宾逊·克鲁苏都不知道其他鲁宾逊·克鲁苏的存在,但是,他们所在的小岛可能都处于同一地理区域,处于同样的气候条件之中。在这种情况下,如果我们假定每一个人只作一种选择的话,那么,Pa * (W)将不是财富在他们之中已实现的连续型分布情况。在彼此完全依存的极端情况下,所有的鲁宾逊·克鲁苏将实现同样的财富,所以,即使效用函数是处处上凹的,也可能会存在完全的平等。而在一些中间情况中,彼此依存的种类与程度影响着已实现的收入分布的形状,但并不影响效用函数的形状对不平等程度的影响方面的一般性结论。
2.社会中的个人 再分配是无耗费的
假定许多完全同一的鲁宾逊·克鲁苏建立起了彼此联系.现在,决定为每一个人所采取的活动的那些考虑已经出现了根本性的改变,因为,为实现所得产品的再分配而通过鲁宾逊·克鲁苏之间的联合预先协议来产生新的预期现在已经是不可能的了。在我们的社会中个人间普遍存在的许多安排都涉及到了这种再分配,所以,不一定要通过“政府”来假定共同行动的存在。公开卖出保险或进行投机的私人企业就是一些极端的且明显的事例。但是,下面这种现象则要很普遍:在我们的社会中,几乎每一个企业都部分地是改变财富的概率分布的一种安排。例如,假定一个鲁宾逊·克鲁苏将其自身作为一个包管他人“工资”、并取得剩余产品的企业家,但是,假定每一个人都打算去做他原先所要做的事,从而这一“企业”不具有任何通常的监督管理职能。这样一来,改变了所涉及的这些人可得的预期系列。的确,将“产生出”新的预期这一职能视为现代社会中的一个“至关重要的”企业职能是可以找到有力证据的,这里,“产生出”新的预期不是通过技术上的变化或改进来进行的,而是通过不确定性影响的再分配来实现的。
当然,一般说来,相互联系通过知识的传布而改变了与任一活动相对应的财富的概率分布,并通过产品的交换而使新的活动成为可能,从而影响到了劳动力的划分及职能的专业化的范围。然而,我们可以不考虑这些复杂情况,因为总体说来它们所影响的只是收入的可得水平,而不是收入的分配。所以,我们可以假定:仅通过相互联系的建立及产品的交换,尚不足以改变每一鲁宾逊·克鲁苏可得的收入的概率分布系列。
然而我们却无法将另一复杂情况如此轻松地置之一旁:即再分配安排中所存在的管理与控制费用。这些代价中最为重要的是此类安排对积极性的影响。与让某人自己承担火灾损失的全部费用的情况相比,如果他已进行房屋火灾损失保险,那么他拿出资源来防止火灾的积极性就较小。用我们的专用术语来说,就是,唯有当所研究的这一鲁宾逊·克鲁苏本人直接得到结果W的时候,活动α及与其相联系的概率分布Pa(W)才是可以取得的.如果某一集团订立了这样的协议:每一个人将采用活动a,集合起所得到或产品,并进行分配(比如说平均地)。那么,实际实现的财富将截然不同于每一个人独立地采用活动a时所实现的财富情况——也就是说,事实上,这一集团中的个人将不会采用活动a。当然,这是为什么防范损失的完全保险唯有对那些大致地与个人行动相独立的危险来说才是可行的一个基本原因,也是为什么所有意在使个人所得与他们的生产贡献相脱离的作法都遇到了极大的困难,甚至于完全失败的一个基本原因。
我们将把这一复杂情况推迟到下一部分中去讨论。在这一部分里,我们将假定再分配安排不涉及任何费用,即不论个人是独立地行动还是进入再分配安排,活动集合A及与此相联系的预期Pa(W)都是同样地可以实现的。这里,W代表着再分配之前个人所实现的财富,即他可以贡献到再分配总量中的份额。如果我们进一步假定任一鲁宾逊·克鲁苏所实现的W都完全地独立于其他人所实现的W,Pa(W)运转得较好,且这些鲁宾逊·克鲁苏的人数是足够多的,那么,个人所采用的活动将仅取决于Pa(W)的预期值,且财富在这些同一的个人之间的分配上的不平等,将仅取决于他们的偏好。在独立性及大数目一定的条件下,在将由任一共同的活动所实现的人均财富——财富的平均值或预期值——方面所存在的不确定性很小(其极限为0)。所以,值得采用人均财富最大的那种活动,原因在于这将使可供分配的总财富最大化,从而使总财富在各鲁宾逊·克鲁苏之间的分配能够以最优方式进行。更为正式地说就是,假定a * 是在前一段中的诸条件下为人们所采用的活动,并假定它将取得预期财富 ,而活动a ** 将取得更高的预期财富Wa * 。假定人们达成了这样一种协议:每位克鲁苏将采用活动α ** ,将其所得产品贡献到公共积蓄中去,然后从中抽取原始收益,这一原始收益是由一给出他所得小于W的概率为Pa * (W)的随机机制所决定的。很清楚,由于每个克鲁苏来说,这一原始收益预期与不存在再分配安排的a * 是同样具有吸引力的,而且现在, 乘以克鲁苏人数被留在了公共积累之中,以提供额外收益,所以,很明显,具有一适当时再分配安排的a ** 比a * 更为可取。基于同样的原因,很明显:永远存在着这样一种再分配安排,它将使某一具有较高预期财富的顶期优于任何具有较低预期财富的预期,而不论后者公否伴随着一种再分配安排t结论是:就我们所讨论的这一特殊情况来说,“大自然”所提供给人们的机会仅决定所实现的财富分配的均值;而财富之不平等则完全是一种人为的结果。
假定财富效用函数是处处下凹的。那么,财富的最优分配明显地是平均主义的。这些鲁宾逊·克鲁苏将把他们的财富汇积到一起,然后每人从中取走一定比例的份额。在另一极端下,假定财富效用函数是处处上凹的,那么,收入的最优分配明显地将是尽可能地不平等。这些鲁宾逊·克鲁苏将把他们的财富汇积到一起,然后每人得到一张彩券,这种彩券为每人赋予了赢得与总财富价值相等的这唯—一份奖品的同等机会。
我们要分析的一更为有趣、且在实证上更为相关的效用函数是有着这样一种形状的效用函数:这种形状是我与萨维奇为说明风险情况下关于行为的几种简单的、且广为接受的实证概括而提出的。我们所提出的函数最初是下凹的,然后上凹,最后又下凹,如图14·1中的U(W)曲线。
令 为最大的预期财富值(当每一个人都采用活动a ** 所实现的)。考虑一下这样一种预期:它是由W的两种价值W l 与W u 所组成的,从而有 ,且相关的概率为p与p u ,从而有 。与这一预期相对应的预期效用是由连结U(W l )与 之弦在W点的纵坐标所绘出。从几何图形上看很明显:如果存在着一条与图14.1中的效用函数切于两点的直线,且如果W介于二切点的横坐标(我们可以用W 1 与W 2 来表示且W 2 >w 1 )之间,那么,如果W l 与W u 分别等于W 1 与W 2 的话,则这一预期效用为最大。从而,相关的概率p l 与p u 将分别为 及 。我们将这一预期称作a d (d代表着“双重相切”)。
任一具有预期值 的更为复杂的预期,都总是可以表示为许多单值或双值的预期(每一预期都有着同样的预期值承)的一种概率组合。所以,这种更为复杂的预期的预期效用,可以被表示为这些单值或双值的预期(这一更为复杂的预期可以分解为这些较简单的预期)的预期效用的期望值,所以,它不可能超出具有最高期望值的这一单值的或双值的分预期的预期效用.结论是:对于由具有图14.1中的效用函数的个人所组成的社会来说,a d 是每一成员的最佳预期选择.在我们的种种假设之下,a d 也将是实现了的财富分配。
与这一结论相关的一个十分显著的特征就是:如果我们完全放弃到目前为止所作的这一假设,即对于所有的个人来说,活动集合A与相关的预期Pa(W),都是完全同一的,这—结论仍然是正确的(在一很小的限制条件下)。在我们的其它假设一定的条件下,财富的事后分配仅取决于效用函数的形状及对社会整体来说人均预期财富的最大值;根本不取决于不同的鲁宾逊·克鲁苏可得的预期方面的差异,而为确保这些结您所需的条件只是:对于每一个鲁宾逊·克鲁苏来说,具有最高的预期财富的这一预期的预期财富值介于W1与W2之间。为了证明这一主张,我们假定存在着这样两组人:这两组人中的每一个成员都有着同样的各种预期,且第一组中预期财富的最大值 (1) 不同于第二组中预期财富的最大值 (2) 。通过前面的分析我们知道,每一组的成员都将分别地上交他们的财富,然后每一成员将得到一张彩券作为回报,这一彩券赋予他(W 2 - (i) )/(W 2 -W 1 )的机会得到W 1 和( (i) -W 1 )/(W 2 -W 1 )的机会得到W 2 。假定第一组占总人数的份额为n (1) ,第二组占总人数的份额为n (2) ,从而n (1) (1) +
n (2) (2) =W,这就是对于社会整体来说最高的预期财富。最终的结论是:
实现财富 W 1 的概率为与下式相等的一个分数:
(3)
而实现财富W 2 的概率则为1减这一分数所剩的值。但是,这与所有的人都具有同样的预期系列,且财富的最高预期值为 时所得到的结论是完全一样的。更为一般地说,最终的结论是:每一个人都采用具有最高的财富预期值的那种活动,并将他的所得贡献给公共积累,然后得到一份保证书作为回报,这一保证书确保了他将得到财富W 1 及赢得一价值为W 2 -W 1 的唯一奖励的机会,对于第i个个人来说,这一机会的大小等于(W (i) -W 1 )/(W 2 -W 1 ),这里 (i) 是该个人所贡献的预期财富。所以,最终得到财富W2的机会将按照个人的预期的把握程度而因人而异,但是,所实现的财富的最终分配却是相同的,就好象所有的人都具有同样的预期系列一样。
放弃“所实现的W值(在再分配之前).在统计上是无关的”这一假设同样不会对这一结论产生很大的影响,尽管这一结论更为复杂了。考虑这样一种极为特殊的情况:在这一情况中,知道某一个人的结果就意味着完全知道所有人的结果。让我们假定:第一,对所有的个人及集合A中的任一a来说W的所有可能值介于W 1 /与W 2 之间。那么,不论所采用的活动是什么,事后将存在着某种实际实现了的价值,且前面的分析表明:这些个人将汇集他们的W,并以投机的方式来进行总量的再分配。所以,实现了的财富分配将由两组个人所构成:一组中每一成员都得到W 1 ,而另一组中每一成员都得到W 2 。只有最终地归于某一组的所有成员的比例取决于实际的结果。事先,在一适当的再分配协议之下,预期效用随预期财富的增加而增加,所以,再一次地。对于所有人来说,最好采用确保最高的预期财富的那种活动。而且再一次地,个人在可得的预期系列方面的差异并不影响最终结果,而只影响到每人所得到的彩券的数量。如果对于集合A来说W的所有可能值并不介于W 1 与W 2 之间,那么,具有最高的预期财富值的a可能不再是最佳选择。但是至少下述结论仍然是成立的,即事先协议安排将能够确保:如果实际实现的W(再分配之前)介于W 1 与W 2 之间时,那么它将被如此地再分配从而得到价值W 1 与W 2 ,结果在所有的情况下,最终实现的财富分配将不落在W 1 与W 2 之间。
“所有个人的偏好(即效用函数)都是同一的”这一假设也可以被去掉而不会对我们下面这个一般性结论产生影响;只要再分配是没有代价的,那么财富之不平等将主要地取决于社会成员的偏好,而只是辅助性地(如果还有一些的话)取决于他们可得的预期系列。然而,放弃这一假设改变了下面这一较为特殊的结论:所实现的财富分配通常将是双值的。令每一个人都分别地具有这样一种效用函数:其一般形状与图14·1中所描绘的完全一样。但是,令这一效用函数的双切线的2个切点的横坐标W 1 与W 2 因人而异(W 1 与W 2 是对目前问题来说唯一有关该函数的2个参数),且用W 1 (i) 与W 2 (i) 来代表第i个人的W 1 与W 2 值。分别地对每一个人来说,最优的再分配安排基本上与前面所讲的情况相同:得到财富W 1 (i) 的机会为(W 2 (i) - (i) )/(W 2 (i) -W 1 (1) ),而得到财富W 2 (i) 的机会为( (i) -W 1 (i) )/(W 2 (i) -W 1 (i) ),这里,W (i) 是该个人所能采用的任一活动所得带来的预期财富的最大值。而且,没有任何东西可以阻止这样一种协议的被采纳:每一个人都采用能确保最大的预期财富的这种活动,向公共积累中贡献所得产品,然后得到一张彩票作为回报,这一彩票赋予他的得到财富W 1 (i) 或W 2 (i) 的机会如上。既然每一张彩票在保险统计上都是“公平的”,那么整个投机也必然是公平的;而且只要Pa (i) (W)能够较好地运行,且W 2 (i) 是有限的,那么,大数法则将依然适用。所以,对于数量足够大的个人来说,这一投机作为一整体来说所存在的不确定性是可以忽略不计的。在这种情况下,实现了的财富分配除取决于最大的预期财富外,还取决于W 1 (i) 与W 2 (i) 的分布情况。偏好方面的差异所具有的影响表现在:将额外的价差引入到偏好一致情况下所实现的财富分配中去,而这一偏差的大小取决于偏好方面的差异程度.正如我们在下一段中所将看到的那样,再分配之成本有着非常相似的作用。
3.社会中的个人 涉及耗费的再分配
再分配安排(特别是通过它们对“积极性”的影响)所带来的大量耗费,使得某些在不存在大量耗费的情况下将是理想的安排被排除在外,结果是:为“大自然”所提供的机会种类,即预期的原始集合P a (W),不仅仅影响着财富分布的均值,而且还影响到了财富分布的形状。这一影响在于产生了某种混合物,它介于第一部分中对与世隔离的个人所作的结论与第二部分中对一个再分配没有耗费的社会中的个人所作的结论之间。
也许,将这两种情况结合起来的最简单的模式就是假定:每一个人所可能采用的活动可以划分为两种相互独立的且无竞争的集合———一种是活动集合A s ,这些活动的所得是不受再分配的影响的;另一种是活动集合A r 这些活动的所得可以在无耗费的情况下进行再分配。接下来,个人将从每一集合中选择一种活动。再分配之前,个人所实现的财富由二部分所构成W s 与W r ,而在再分配之后,则由W s 与W r ’所构成,所以,他的最终财富是W s 十W r ’。现在,每一个人所涉及的是W s 十W r ’的概率分布,而不是其中某一个的概率分布。
如果效用函数的形状如图14·1中的U(W),且(为了简便起见)对于所有的个人来说效用函数都是相同的,那么,最优化的再分配安排将是什么呢?现在,实现下述最佳选择已不再可能了:一个具有最高的期望值及适当的概率的双值预期,这一预期或得到W 1 或得到W 2 。原因在于,不论采取何种再分配安排,如果我们假定(正如似乎是理想的那样)W r ’不取决于实现了的W s (尽管它可能取决于预期的Pa s (W s ),那么,将无法抵消或避免W s 所面临的风险。很清楚,来自于A r 的最好选择仍然是具有最高的预期财富的那一个——既然W r 的任一理想的再分配都是可以实现的,那么,使得可供分配的总量尽可能地大并不会带来任何损失。此外,最好对来自于集合A s 的选择及再分配安排加以调整,从而尽可能地近似于最佳选择。
为了近一步地对最佳再分配安排的某些特殊之点加以探讨,毫无疑问地还需要对集合Pa s (W s )的性质,也许还要对效用函数U(W)的性质作更为严谨的限定,其严谨程度高于到目前为止我们所作过的任何限定;存在着某种Pa s (W s )。它将能证明任何一种再分配安排这似乎并不是不可能的。我并不准备对这一问题作详尽的分析。但是我认为,对于很大一部分函数Pa s (W s )及效用函数U(W)来说,最佳的再分配安排与第二部分中所述的情况是完全一致的,而且,即使预期系列因人而异,这一点仍然是正确的。在进一步分析之前,我将暂时地接受这一看法,并假定:Pa s (W s )及效用函数U(W)具有为使之合理而需具备的这些性质。
这种再分配安排可以被描述为:每一个人贡献某一数额,即在一投机中购买一个份额,然后得到获得某一既定数额的某种特定的机会作为回报,即得到获得某一奖品的某种机会作为回报。每一个人所付出的数额取决于他所实现的W r 及他从集合A s 中所选择的那一预期——但不取决于所实现了的W s ,因为这将与“W s 是不受再分配的影响的”这一假设相矛盾。如果所有的个人都具有同样的预期集合,那么他们都将选择同种预期,而且人们在所付出的数额方面的差异将仅仅是因为所实现的W r 因人而异。然而,如果人们具有不同的预期集合,那么个人所付出的数额将取决于实现了的W r ,以及人们由集合A s 中所选取的那一特定的预期;这是因为:这种付出的目的是要在个人没有赢得奖金时仍能大约保持W 1 的水平。这样一来,与那些所拥有的预期只能确保较小的W s 值的人相比,那些所拥有的预期能确保较大的W s 值的人将保留较少的W r (或此外还将支付更多)。付出方面的差异将由赢得奖金的机会方面的差异所弥补(即由彩票数量的多少方面的差异来弥补),与前者相比,后者将得到较大的机会。该项奖金的多少对于所有的人来说都是一样的,等于W 2 -W 1 。原因在于奖金的目的是使获奖者大约保持在W 2 的水平上。
在这一再分配安排下,最终实现了的财富分布是两种财富分布的概率总和。集合A s 中人们所采用的这些活动导致了所实现的W s 的某种财富分布,其准确形式取决于:最佳的特定选择,为不同的个人所实现的W s 之间的相互依赖程度,以及个人之间在可得的预期体系方面的差异。现在,这一分布由为购买彩票所进行的支付所限定。鉴于不同的个人在所作的支付方面的差异被用来抵消可得的预期体系方面的这种差异,所以,它们的作用在于使该分布的重心移到W 1 ,且仅在个人可得的预期体系彼此不同的情况下,减少了该分布的变动性。假定现在投机的格局已定,且赢者与输者已定。这使得这一财富分布分解为两种分布——一种是对赢者而言的,一种是对输者而言的。由于那些具有一般说来较好的预期系列的人有着较大的中奖可能,且由于由一般说来较好的预期系列所实现的财富分布可能系统地不同于由其它预期所实现的财富分布(其区别表现在除均值或决定进入该投机之中的抵消支付的位置参数以外的那些方面),所以,通常说来。这两种分布不一定是完全一样的。现在,对赢者而言的这一分布由对每一赢者的奖金支付(W 2 -W 1 )所改变,且最终的分布为对流者而言的分布与对输者而言的分布之和。
为了证明这一点,令D(W)代表对彩票的支付之后但在奖金分配之前所实现的财富的连续型分布;也就是说,D(W)是在这一阶段上,财富小于W的个人的比例。假定在这一阶段上,这一分布独立于该投机的约定支付,从而对于赢者及输者来说这一分布都是相同的。令g代表将赢得奖金的个人的比例,且W’=W 2 -W 1 为奖金数额。这样一来,最终的财富分布为:
F(W)=(1-g)D(W)+gD(W-W’) (4)
下述说法可能不具有什么明显的意义:这一分布是两种分布之和,而不是一两个随机变量之和的分布。
正如前一部分中所提到的那样,放弃同一偏好假设并不能从根本上改变这些结论.如果在偏好方面存在着某种共性的话,那么,W 1 与W 2 的个别值将形成两种大致不同的分布。W 1 与W 2 的的这些值中存在的偏差基本上被加到W s 的值中所存在的偏差中去,且对最终分布有着与W s 的值中存在的最初较大的偏差同样的影响。
这两子分布在方程(4)或其一般化形式中所具有的相对重要性,取决于赢者的比例,而赢者的比例依次地又取决于所实现的财富的均值相对于W 1 及W 2 的大小。效用曲线的形状及位置本身由社会的平均财富及财富的分布所决定,这似乎是合理的。原因在于:到目前为止,我们一直将效用曲线视为简单地给定的,且视为独立于个人可得的预期体系或实现了的财富分配,但很清楚,从超出为我们的目的所必需的一种较为广泛的角度来看,效用曲线与预期系列必须被看作是相互作用的。为了与推导出图14·1中效用曲线的这一特殊形式的那些所观察到的事实相一致,社会中财富的均值与W 1 的接近程度必须远远大于与W 2 的接近程度。这意味着赢者比例g接近于零。如果g趋近于零的话。那么,既然大致以W 1 为中心的第一个子分布比大致以W 2 为中心的第二个子分布有着大得多的权数.所以,通过对由方程(4)所描述的这一连续型分布的微分或差分所推导出的概率或频率分布将是高度不对称的。此外,这一分布可能是单峰分布,其单峰出现在W 1 附近(< );在W 2 附近,由第二个分布的上升部分所趋于引入的第二个最频值可能被具有较大权数的第一个分布在W 1 之后的下降所压倒。这样一来,第二个子分布的影响在于使复合分布的最频值稍稍移到了原先第一个分布的最频值的右边,并使复合分布的尾部变平且向外伸展。这一复合分布将显得相当尖耸,在以财富为横轴的正方向上,它的尾部出奇地狭长。现在,“相当的不对称性,广泛的变异性,及极大的尖耸性……成了来自于独立的职业活动的收入的分配特点”,也是来自于其它方面的收入的分配特点,此外也是所观测到的财富分配的特点。而且,这些特点完全是当g较小时,由方程(g)所推导出的这些分布所可能期望具有的性质。所以,我们的理论分析所导出的这一分布函数至少满足了下述最初检验:能够再现所观测到的财富与收入的分布所具有的这些更为显著的特征。
当然,方程(4)与所观测到的财富或收入的分布之间不存在明显的不一致这一事实,并不意味着它与这些分布相一致,或作为其存在基础的模型业已对反映财富或收入的现存分布的那些关键因素作了区分。但是,同这一理论结构的合理性一道,它可能确实证实了这样一种实证研究,为的是观察方程(4)是否实际上充分地反映了财富或收入的现存分布。
4.结论
前述分析是极为尝试性的与极为初级的:它所包含的这些论点还需要进一步的验证;它所考虑伪只是一些高度简化的模型;它还作了这样一种高度简化,即将财富分布视为一单一选择的结果,及这一选择在随机事件的影响之下的必然表现,等等。然而我认为它已足已证明:人们无法排除这样一种可能性,即现实存在的财富不平等的很大一部分可以被看作是人们为满足其兴趣与偏好而造成的.它告诉我们:天赋或继承财富方面的不同与所实现的财富分配方面的不同之间的联系,并不是象人们通常所假定的那么直接与简单,且许多共同的经济与社会安排——从经济企业的组织形式到共同征收及强制实行的所得税与遗产税——可以被理解为(至少部分地是这样)为取得一种与社会成员的兴趣及偏好相一致的财富分配所采用的方法。最后,在关于收入分配及产生这种分配的各种安排的规范性判断方面,它告诉我们:与外部加之于个人的不平等相比,由参加一项投机的精心决策所导致的不平等明显地带来了完全不同的规范性问题。
| |
|